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An Exciting Time in Neutrino Physics

* Neutrinos have mass - detectable by measuring neutrino flavor
oscillations
— V. —> Vv, (solar experiments, Kamland)
- Vv,V (atmospheric experiments, K2K, MINOS)

* Within the next few years we will have our first look beyond the Chooz
limit to see whether or not the mixing angle , 6,5 is “large”

* Large or “small” we have a plan* for what we need to do :
— Measure 6,
— Determine the neutrino mass ordering
— Search for CP violation in the neutrino sector

*Report of the US long baseline neutrino experiment study can be found at
http::nwg.phy.bnl.gov/~diwan/nwg/fal-bnl

Recommendations to the Department of Energy and the National Science Foundation on
a Future U.S. Program in Neutrino Oscillations can be found at
http::www.science.doe.gov/hep/NUSAGFinalReportluly13,2007.pdf



The Plan/Vision

* We can design future experiments (using conventional® neutrino
beams) to have 3-50 discovery potential for measuring sin®20,, CP
violation and the neutrino mass hierarchy

 If 0.001 <sin“26,5, < 0.01 reaching these sensitivities will require
reached

— a proton source at the Megawatt level (or decades of running
time)

— a neutrino beam optimized to the oscillation probability
(covering the 1t and 2" oscillation maximum)

— an experiment baseline > 1000 km (to improve the sensitivity to
determine the mass hierarchy)

— a Detector with mass x efficiency ~50-100kT

*If nature has made 0., very small we may need to move beyond conventional
beams, i.e. neutrino factory



July 2007
Recommendations from NuSAG

Recommendation 1. The US should prepare to proceed with a long baseline neutrino
oscillation program to extend sensitivity to sin’20,,, to determine the mass ordering of the
neutrino spectrum, and to search for CP violation in the neutrino sector. Planning and R&D
should be ready for a technology decision* and a decision to proceed when the next round of
results on sin?20,, becomes available, which could be as early as 2012. A review of the
international program in neutrino oscillation and the opportunities for international
collaboration should be included in the decision to proceed.

— * Two candidate technologies :

* Water Cherenkov
— Low efficiency — LARGE
— Existence proof : SuperK
* Liquid Argon TPC
— High efficiency — SMALLER
— Existence proof :TBD

— In the past year a community consensus is emerging that both

technologies have a lot of merit and we are beginning to envision a
future program in which both evolve



July 2007
Recommendations from NuSAG

Recommendation 4. A phased R&D program with milestones and using a technology
suitable for a 50-100 kton detector is recommended for the liquid argon detector
option. Upon completion of the existing R&D project to achieve purity sufficient for
long drift times, to design low noise electronics, and to qualify materials,
construction of a test module that could be exposed to a neutrino beam is
recommended.
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suitable for a 50-100 kton detector is recommended for the liquid argon detector
option. Upon completion of the existing R&D project to achieve purity sufficient for
long drift times, to design low noise electronics, and to qualify materials,
construction of a test module that could be exposed to a neutrino beam is
recommended.

ll Perlite insulation




Evolution of the Liquid Argon Physics Program
YaIeE'I?PC% _ Purity, electronics development  “phased R&D program”

Luke & Bo
(j) _ Underground safety, cryo operation,
TPC performance, reconstruction
ArgoNeuT Cold electronics, evacuation

@croBooNE) I rcquirement, tank construction,

insulation
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Technical Issues

Many technical issues will be addressed directly in the design,
construction, and operation of the MicroBooNE
detector, however for the larger scale there are many more unique issues

* Design Considerations

Liquid Argon purity — maximum
drift — channel count

Thermal insulation — Operation
cost

Location : surface/underground

* Mechanical stability and safety
— cryostat design

* Cosmic ray backgrounds

* Scaling considerations

Modularity

Shape

Total-Fiducial-Active volume ratio
Number of electronic channels

Surface-to-volume ratio (heat
input and wall outgassing)

Cryostat thermal insulation
techniques

Materials and construction
techniques



Why a 5 kiloton step?

* From a purely technical point of view, the step after
the 100 - 200 t detector, could be 1 to 5 kilotons

— The main technical purpose of this step is to determine
construction techniques and the scaling laws, especially
in regards to cost

e | ocation of 1 - 5 kilotons

— 1 kT in a near location gets lots of events; does near
detector physics - no oscillation physics

— 5KkT in a far location is about the smallest one can build
and have decent sensitivity to physics measurements

OKT Is an appropriate step in mass and has compelling
physics potential



Similar idea evolving in Europe :Project MODULAr
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Detector Siting Options

o (Off-axis neutrinos e (On-axis neutrinos
— Reduced backgrounds from — Broadband beam : more
neutral current interactions events, both signal and
 Reason for NOVA choice background
— Lower the.engrgy to get closer — On-axis option can be considered
to the oscillation maximum if the detector has excellent

* Reason for the MODULAr choice
Medium Energy NuMI Beam Tune
e B 2 —

NC nt®/y rejection
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The NuM| Beam
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Siting options at Ash River
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The MINOS Cavern

at the Soudan Underground Laboratory




LANNDD Modular Concept

3 MODULES
DRIFT =4m
6 2-PLANE WIRE CHAMBERS
56'000 CHANNELS (WIREPITCH = 3mm)
ACTIVE VOLUME = 3'840 m3

ACTIVE MASS = 5'376 m3

TPC contained in a multi-cell
mechanical structure

Drawing courtesy of D. Cline and F. Sergiampietri



The DUSEL Option
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| Ar5 @ Ash River (ME
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LAr5 @ SOUDAN (LE
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LAr5 @ L = 1300 km
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Pros and Cons of the NuMI Options

— The NuMI beam exists; it will be upgraded to 700kW for NOvA
— Ash River

* The Ash River site will be developed for NOVA; LAr5 could benefit from the
infrastructure

— Soudan

* The SOUDAN cavern + laboratory infrastructure exists; MINOS will complete

its running ~2011; disassembly and removal of MINOS was built into the
planning

* The cavern holds a maximum of ~5kT : no scope creep!
* Requires us to address underground construction & operation

* The underground location eliminates the concern about surface operation
(which in principle is possible, but likely to lead to additional challenges)
— Any detector constructed for proton decay will need to be at depth
— This 5kT may be able to make a contribution to the p— Kv search

— Physics reach is comparable to NOvA — ~doubling the mass



Pros and Cons of the NuMI Options

e (Cons:

— The NuMI beam exists; the baseline is limited to 735km on axis
and 810 km off-axis; the decay pipe geometry is optimized for high
energy

— The Ash River site is being developed for NOvA; additional site
development might not be practical on a fast time scale

— The Soudan cavern holds a maximum of ~5kT : no upgrade path

— Physics reach is comparable to NOvA : good for 0., limited for
mass hierarchy



Pros and Cons of the DUSEL Option

e Cons:

The DUSEL beam doesn'’t exist; minimum 5 year, >$200M construction project

DUSEL caverns do not exist, even for 5 kT; preliminary estimate at 300 level
~$25M

* Pros:

The DUSEL beam doesn’t exit : we can design an optimized beam
The cavern doesn't exist ; can be planned for future expansion
Two options for depth : 300’ drive-in, 4850’ to be developed

The underground location eliminates the concern about surface operation
(which in principle is possible, but likely to lead to additional challenges)

* Any detector constructed for proton decay will need to be at depth
* This 5kT may be able to make a contribution to the p— Kv search

Plans for an early implementation in progress (SUSEL) [April Workshop]
Physics reach for 0,5 is comparable to NOVvA; better for mass hierarchy
Eventually sensitivity to CP Violation



Schedule considerations

Fiscal Year

Accelerators

8 GeV Protons on Target / year (Power’

Main Injector (120 GeV)
120 GeV Protons on Target / year
Project X
Shutdown for NuMI and Project X
Neutrino Program
1. Operating
MiniBooNE
SciBooNE
MINOS - Far
MINOS - Near Detector
2. Construction
MINERVA
NOvA
3. Liquid Argon Detector Evolution
ArgoNeuT (0.3t)
MicroBooNE (170t)
LAr 5kT at Soudan

4. Superbeam to experiment
5. Large Detector at DUSEL
Large Cavern Engineering
Water Cerenkov Detector
PMT production
Module 1 Excavation + Inst + Opr
Module 2 Excavation + Inst + Opr
Module 3 Excavation + Inst + Opr
AND/OR

LAr100 - M x N plan
Module 1 Excavation + Inst + Opr
Module 2 Excavation + Inst + Opr
Module 3 Excavation + Inst + Opr

2008 2009 2010 2011 2012
2.7E20 (17 kW)
220kW  300kW  300kW 400 kW 400 kW
2.30E+20 3.10E+20
R&D
~10 months
Operation
Operation
Operation
Operation

o/ 5 (¥eis Commiss. Operation

R&D Construction

Operation

R&D [T Operation
R&D
R&D

R&D

R&D

R&D

R&D

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
1.60E+21 " 3.1E21 (200kW)
760 kW 760 kW 760 kW ~IMW  23MW  23MW  23MW  23MW  23MW

1.00E+21 2.40E+21
Commiss. Operation
6-12 months

NuMI/Booster Program

Commiss. Operation

Construction

PMT Production
Excavation
Excavation
Excavation

Installation
Installation
Installation

Operation
Operation

Excavation Construction Installation
Excavation Construction Installation
Excavation Construction

Operation

Installation

2023 2024 2025

23MW - 23MW 23 MW




Conclusions

We believe that a 5 kiloton liquid argon neutrino detector is the
appropriate size to plan for the next step (after MicroBooNE) in
developing this detector technology

A 5kT detector has powerful physics potential, in either the NuMI or
DUSEL locations

The major technological design issues that will be addressed in our
Proposal are :

— Cryostat/TPC configuration
— Installation/construction techniques
— Mitigation of safety issues (containment, egress)

— Per channel cost of electronics
— Total Project Cost estimate

We request engineering and design support to develop a Proposal

Given appropriate support and encouragement we will organize into a
more formal collaboration structure

We would aim to have a Proposal ready one year from now
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